

Fig. 2. Stereo drawing of copper polyhedra around $\operatorname{Hf}(2)(z=1)$ and $\operatorname{Hf}(1)\left(z \simeq \frac{2}{3}, \frac{4}{3}\right)$.

References

Bailey, D. M. \& Kline, G. R. (1971). Acta Cryst. B27, 650-653.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
International Tables for X-ray Crystallography (1968). Vol. III. Birmingham: Kynoch Press.

Johnson, C. K. (1970). ORTEP. Oak Ridge National Laboratory Report ORNL-3794.
McMasters, O. D., Gschneidner, K. A. Jr, Bruzzone, G. \& Palenzona, A. (1971). J. Less-Common Met. 25, 135-160.
McMasters, O. D., Gschneidner, K. A. Jr \& Venteicher, R. F. (1970). Acta Cryst. B26, 1224-1229.

Main, P., Woolfson, M. M. \& Germain, G. (1972). LSAM: A System of Computer Programs for the Automatic Solution of Centrosymmetric Crystal Structures. Dept. of Physics, Univ. of York, York, England and Laboratoire de Chimie Physique, Université de Louvain, 39 Schapenstraat, Leuven, Belgium.
Meulenaer, J. de \& Tompa, H. (1965). Acta Cryst. 19, 1014-1018.
Perry, A. J. (1974). Mater. Sci. Eng. 13, 57-62.
Perry, A. J. \& Hugi, W. (1972). J. Inst. Met. 100, 378380.

Fig. 3. Radius-ratio values for compounds with $\mathrm{GdAg}_{3.6}$ (circles) and MoNi_{4} or ZrAu_{4} structure types (squares). Metallic radii for coordination number 12 according to the periodic table of elements of Sargent-Welch.

Steeb, S., Gebhardt, E. \& Reule, H. (1972). Mh. Chem. 103, 716-735.
X-RAY system (1972). Tech. Rep. TR-192 of the Computer Science Center, Univ. of Maryland.
Yvon, K., Jeitschio, W. \& Parthé, E. (1969). A Fortran IV Program for the Intensity Calculation of Powder Patterns. Univ. de Genève, Laboratoire de Cristallographie aux Rayons \mathbf{X}.

Acta Cryst. (1975). B31, 610

1,2,3,4,4a $\alpha, 5,11 \mathrm{a} \alpha$-Heptahydroacetoxy-11 $\beta \boldsymbol{H}$-dibenz[b,e]azepine-6-one

By Judith L. Flippen
Naval Research Laboratory, Washington, D.C. 20375, U.S.A.

(Received 4 September 1974; accepted 11 October 1974)

Abstract

C}_{16} \mathrm{H}_{19} \mathrm{NO}_{3}\), monoclinic, $P 2_{1} / c, a=9 \cdot 462$ (4), $b=16.082$ (6), $c=10.280$ (6) $\AA, \beta=110.9(1)^{\circ}, Z=4$, $D_{\text {calc }}=1.24 \mathrm{~g} \mathrm{~cm}^{-3}$. The structure was solved by the symbolic addition procedure and refined by full-matrix least-squares calculations to a final R value of 4.8%. The molecule has a cis junction between the sevenmembered ring and the saturated six-membered ring and the peptide group which is part of the sevenmembered ring is planar.

Experimental. One method of preparing benzazepinones is by carrying out a Norrish type II photoreaction (Wagner, 1971) on N-alkylated phthalimides (Kana-
oka, Migita, Koyama, Sata, Nakai \& Mizoguchi, 1973). The benzazepinone to be discussed here was obtained as one of the products in such a reaction (Kanaoka, Koyama, Flippen, Karle \& Witkop, 1974). Crystals used in the X-ray analysis were provided by Dr B. Witkop of the National Institutes of Health. An automatic computer-controlled diffractometer was used to collect 2346 independent reflections from a colorless crystal ($\sim 0.40 \times 0.45 \times 0.16 \mathrm{~mm}$) with $\mathrm{Cu} K \alpha$ radiation ($\lambda=1.54178 \AA, \mathrm{Ni}$ filter). Data were collected by the $\theta-2 \theta$ scanning technique ($\max \sin \theta / \lambda=0.521$) over a scan width of 1.75° and at a scanning speed of 2° $\min ^{-1}$.

Table 1. Fractional coordinates and thermal parameters with standard deviations
The thermal parameters are of the form $T=\exp \left[-\frac{1}{4}\left(B_{11} h^{2} a^{* 2}+B_{22} k^{2} b^{* 2}+B_{33} l^{2} c^{* 2}+2 B_{12} h k a^{*} b^{*}+2 B_{13} h l a^{*} c^{*}+2 B_{23} k l b^{*} c^{*}\right)\right]$. Standard deviations are based solely on least-squares parameters.

	x	y	z	B_{11}	B_{22}	B_{33}	B_{12}	B_{13}	B_{23}
N	$0 \cdot 47853$ (15)	0.52722 (9)	$0 \cdot 17234$ (14)	3.77 (6)	$3 \cdot 46$ (6)	$3 \cdot 28$ (6)	-0.34 (5)	$1 \cdot 62$ (5)	-0.44 (5)
$\mathrm{O}(1)$	$0 \cdot 64701$ (15)	$0 \cdot 57085$ (8)	0.07607 (13)	$5 \cdot 62$ (7)	$4 \cdot 24$ (6)	$4 \cdot 41$ (6)	-1.05 (5)	$3 \cdot 12$ (6)	-0.92 (5)
$\mathrm{O}(2)$	$0 \cdot 33848$ (16)	$0 \cdot 74251$ (8)	$0 \cdot 33015$ (15)	$6 \cdot 82$ (8)	$3 \cdot 74$ (6)	$5 \cdot 19$ (7)	$1 \cdot 16$ (6)	$3 \cdot 40$ (6)	-0.27 (5)
$\mathrm{O}(3)$	$0 \cdot 30847$ (22)	$0 \cdot 81805$ (11)	$0 \cdot 14051$ (20)	9.94 (12)	5.96 (9)	6.73 (10)	3.07 (8)	4.07 (9)	1.91 (8)
C(1)	$0 \cdot 59595$ (20)	0.57399 (11)	$0 \cdot 17185$ (18)	4.09 (8)	$3 \cdot 23$ (7)	3.75 (8)	0.26 (6)	1.75 (7)	-0.11 (6)
C(2)	$0 \cdot 66696$ (20)	$0 \cdot 63093$ (11)	$0 \cdot 29285$ (18)	$4 \cdot 22$ (8)	3.33 (7)	3.57 (8)	-0.27 (6)	1.49 (6)	-0.07 (6)
C(3)	$0 \cdot 57880$ (21)	$0 \cdot 68011$ (11)	$0 \cdot 34752$ (18)	5.05 (9)	3.09 (7)	3.39 (7)	-0.35 (7)	1.74 (7)	-0.08 (6)
C(4)	$0 \cdot 40795$ (21)	$0 \cdot 67587$ (11)	$0 \cdot 27981$ (19)	$4 \cdot 91$ (9)	$3 \cdot 25$ (7)	$3 \cdot 79$ (8)	0.57 (7)	$2 \cdot 22$ (7)	-0.21 (6)
C(5)	$0 \cdot 33613$ (21)	$0 \cdot 59479$ (11)	$0 \cdot 30605$ (18)	$4 \cdot 41$ (9)	$3 \cdot 72$ (8)	$3 \cdot 77$ (8)	0.01 (6)	1.99 (7)	0.01 (6)
C(6)	$0 \cdot 43261$ (19)	$0 \cdot 51995$ (11)	$0 \cdot 29500$ (17)	$4 \cdot 16$ (8)	$3 \cdot 39$ (7)	$3 \cdot 26$ (7)	-0.11 (6)	1.70 (6)	0.03 (6)
C(7)	$0 \cdot 35105$ (22)	$0 \cdot 43683$ (12)	$0 \cdot 29091$ (20)	$5 \cdot 02$ (9)	$3 \cdot 66$ (8)	4.76 (9)	-0.42 (7)	2.37 (8)	0.04 (7)
C(8)	$0 \cdot 18947$ (23)	$0 \cdot 43507$ (13)	$0 \cdot 18772$ (22)	4.93 (10)	$5 \cdot 10$ (10)	4.96 (10)	-1.13 (8)	$2 \cdot 12$ (8)	-0.58 (8)
C(9)	0.09838 (23)	$0 \cdot 50637$ (14)	$0 \cdot 21524$ (24)	$4 \cdot 29$ (9)	$5 \cdot 61$ (11)	$6 \cdot 19$ (12)	-0.41 (8)	$2 \cdot 32$ (8)	0.03 (9)
$\mathrm{C}(10)$	$0 \cdot 17199$ (23)	$0 \cdot 58925$ (13)	$0 \cdot 20549$ (24)	$4 \cdot 18$ (9)	5.01 (10)	$6 \cdot 35$ (12)	0.36 (7)	2.26 (8)	0.71 (9)
C(11)	$0 \cdot 82427$ (23)	$0 \cdot 63634$ (13)	$0 \cdot 34755$ (23)	4.51 (9)	4.86 (10)	$5 \cdot 23$ (10)	-0.53 (8)	1.62 (8)	-0.26 (8)
C(12)	$0 \cdot 89479$ (26)	$0 \cdot 68960$ (16)	$0 \cdot 45800$ (25)	$5 \cdot 08$ (11)	$6 \cdot 45$ (13)	$5 \cdot 80$ (12)	-1.44 (10)	0.95 (9)	-0.57 (10)
C(13)	$0 \cdot 80827$ (30)	0.73765 (15)	$0 \cdot 51251$ (25)	7.04 (14)	$5 \cdot 52$ (12)	4.82 (11)	-2.04 (10)	$1 \cdot 14$ (10)	-1.08 (9)
C(14)	$0 \cdot 65082$ (27)	0.73356 (13)	$0 \cdot 45728$ (22)	$7 \cdot 07$ (13)	3.79 (9)	$4 \cdot 34$ (9)	-0.89 (8)	$2 \cdot 32$ (9)	-0.75 (7)
C(15)	$0 \cdot 29184$ (22)	$0 \cdot 80951$ (12)	$0 \cdot 24873$ (25)	3.94 (8)	$3 \cdot 65$ (9)	$5 \cdot 95$ (11)	0.36 (7)	1.59 (8)	-0.50 (8)
C(16)	$0 \cdot 21849$ (28)	$0 \cdot 87055$ (15)	$0 \cdot 31309$ (30)	$6 \cdot 85$	$5 \cdot 13$ (12)	50	56 (10)	$2 \cdot 82$ (12)	-1.35 (11)

The structure was solved by routine application of the symbolic addition procedure for centrosymmetric crystals (Karle \& Karle, 1966) with the help of programs written by R. D. Gilardi and S. A. Brenner of this laboratory. Full-matrix least-squares methods (Busing et al., 1971) were used to refine the structure with the atomic scattering factors listed in the International Tables for X-ray Crystallography (1962). Data for which $\left|F_{o}\right|<\left.3 \cdot 0 \sigma\right|_{F_{o}} \mid$ (259 reflections) were given zero weight and omitted from the refinement. The remaining 2177 reflections were weighted according to the procedure outlined by Gilardi (1973) and the function minimized was $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ where $w=$

Fig. 1. Bond distances and angles. The numbering scheme is arbitrary and not related to the IUPAC numbering used in the title. Standard deviations are on the order of $0.003 \AA$ for bond lengths and $0 \cdot 2^{\circ}$ for angles.

Table 1 (cont.)

		y	z
	x	y	z
H(N)	0.425	0.493	0.088
H(C4)	0.384	0.679	0.177
H(C5)	0.345	0.596	0.412
H(C6)	0.536	0.521	0.380
H(C7)	0.415	0.395	0.279
H(C7)	0.347	0.428	0.386
H(C8)	0.184	0.438	0.087
H(C8)	0.139	0.375	0.194
H(C9)	0.099	0.499	0.317
H(C9)	-0.018	0.508	0.146
H(C10)	0.164	0.597	0.160
H(C10)	0.114	0.639	0.228
H(C11)	0.885	0.598	0.300
H(C12)	0.015	0.692	0.495
H(C13)	0.865	0.775	0.592

weight. Hydrogen atoms were located in a difference map, assigned isotropic thermal parameters equal to the final isotropic value of the atom to which they were bonded, and included in the refinement as constant parameters. The final R value for the data used in the refinement was $0.048(R w=0.044)$ and for the full set of data the final R value was $R=0.063$ ($R w=$ 0.062). In Table 1 are listed the final refined coordinates and thermal parameters for the non-hydrogen atoms and the coordinates for the hydrogen atoms as obtained from a difference map.*

Discussion. Fig. 1 illustrates the configuration of the molecule. The aromatic ring plus atoms $\mathrm{C}(1)$ and $\mathrm{C}(4)$ of the seven-membered ring are coplanar. The saturated

[^0]

Fig. 2. Configuration of the molecule. The non-hydrogen atoms are shown at their final refined coordinates with anisotropic thermal parameters. The hydrogens are displayed at their difference-map coordinates with arbitrary isotropic thermal factors.

Fig. 3. Molecular packing. The $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond is illustrated actoss the center of symmetry at $\frac{1}{2}, \frac{1}{2}, 0$. The view is seen looking down \mathbf{a} with $\mathbf{b} \rightarrow$ and $\mathbf{c} \uparrow$.
six-membered ring has a normal chair conformation [average absolute value for the ring torsion angles is $52.6(2)^{\circ}$]. The seven-membered ring is in a boat conformation. (Torsion angles for this ring are listed in Table 2.) The hydrogens on $\mathrm{C}(5)$ and $\mathrm{C}(6)$ are on the same side of the fused ring system defining a $c i$ j junction between the seven-membered ring and the saturated ring. The acetate moiety is planar and extended away from the seven-membered ring. The peptide group $[C(2), C(1), O(1), N$, and $C(6)]$ is planar. Bond distances and angles for this molecule are illustrated in Fig. 2. The $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ single bonds which are contiguous to either the aromatic ring or a carbonyl group are shortened because of the conjugative effects of these moieties. The average $\mathrm{C}-\mathrm{H}$ bond length is $1.02 \AA$ and the $\mathrm{N}-\mathrm{H}$ distance is $1.00 \AA$. The two carbonyl bonds [$\mathrm{C}(1)-\mathrm{O}(1)$ at $1 \cdot 243$ (2) \AA and $\mathrm{C}(15)-\mathrm{O}(3)$ at $1 \cdot 186$ (2) \AA] have significantly different lengths. This is due to the participation of $\mathrm{O}(1)$ as the acceptor in a strong $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bond ($\mathrm{H} \cdots \mathrm{O}=$ $1 \cdot 88, \mathrm{~N} \ldots \mathrm{O}=2 \cdot 87 \AA, \mathrm{~N}-\mathrm{H} \cdots \mathrm{O}=171 \cdot 4^{\circ}$) which links the molecules into pairs across a center of symmetry (see Fig. 3). Both stereo drawings were done with $O R$ $T E P$ (Johnson, 1965). The hydrogen bond is the only intermolecular approach less than conventionally quoted van der Waals' separations.

This work was supported in part by the NIAMD of the National Institutes of Health.

Table 2. Torsion angles (${ }^{\circ}$)
The numbers in parentheses are the estimated standard deviations in the last significant figure.

$\mathrm{N}-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$-44.3(2)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$-1.0(2)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$71.9(2)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$-41 \cdot 6(2)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}$	$-44.7(2)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}-\mathrm{C}(1)$	$81 \cdot 0(2)$
$\mathrm{C}(6)-\mathrm{N}-\mathrm{C}(1)-\mathrm{C}(2)$	$-9 \cdot 7(2)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	$-168 \cdot 5(1)$
$\mathrm{N}-\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(10)$	$78.1(1)$

References

Busing, W. R., Martin, K. O., Levy, H. A. Ellison, R. D., Hamilton, W. C., Ibers, J. A., Johnson, C. K. \& Thiessen, W. E. (1971). ORXFLS3. Oak Ridge National Laboratory.
Gilardi, R. D. (1973). Acta Cryst. B29, 2089-2095.
International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Johnson, C. K. (1965). ORTEP. Oak Ridge National Laboratory Report ORNL-3794.
Kanaoka, Y., Koyama, K., Flippen, J. L., Karle, I. L. \& Witkop, B. (1974). J. Amer. Chem. Soc. 96, 4719-4721. Kanaoka, Y., Migita, Y., Koyama, K., Sata, Y., Nakai, H. \& Mizoguchi, T. (1973). Tetrahedron Lett. pp. 11931196.

Karle, J. \& Karle, I. L. (1966). Acta Cryst. 21, 849-859. Wagner, P. J. (1971). Acc. Chem. Res. 4, 168.

[^0]: * A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 30725 (11 pp., 1 microfiche). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH 11 NZ, England.

